The Dynamic Data-Driven Application Systems (DDDAS) paradigm shapes a symbiotic feedback ecosystem consisting of models of physical and engineered systems and application instrumentation. Precisely, DDDAS establishes new avenues for accurate analysis and robust prediction, and control in application systems using multi-modal fusion of sensory data. The ubiquitous Big Data problems place the DDDAS as a unifying framework among applications, mathematical and statistical modeling, as well as information systems. Such challenges make the DDDAS paradigm now more relevant than ever that integrate modeling, measurements, and software. The DDDAS Session invites papers that demonstrate advances in the DDDAS paradigm that combine real-world applications, contemporary mathematical approaches, real-time large scale measurements, with software solutions. Key applications requiring DDDAS high-end computing solutions include distributed wireless platforms, distributed processing, collection and processing of sensor data for situation awareness, and critical infrastructure systems.
Organizers: Erik Blasch, Frederica Darema, Vasileios Maroulas, Ioannis D. Schizas