Previous Conferences
Jump to: navigation, search
Line 292: Line 292:
 
{| id="mp-upper" style="width: 80%; margin:4px 0 0 0; background:none; border-spacing: 0px;"
 
{| id="mp-upper" style="width: 80%; margin:4px 0 0 0; background:none; border-spacing: 0px;"
 
<div id="tutoial17"></div>
 
<div id="tutoial17"></div>
<!--        T17 Maneuvering Target Tracking: Overview and Nonlinear Filtering Methods       -->
+
<!--        T17 Emerging Quantum Technologies for Fusion       -->
 
| clatutoial="MainPageBG" style="width:100%; border:1px solid #a3babf; background:#f5fdff; vertical-align:top; color:#000;" |
 
| clatutoial="MainPageBG" style="width:100%; border:1px solid #a3babf; background:#f5fdff; vertical-align:top; color:#000;" |
 
{| id="mp-left" style="width:100%; vertical-align:top; background:#e7f7e76;"
 
{| id="mp-left" style="width:100%; vertical-align:top; background:#e7f7e76;"
  
| style="padding:2px;" | <h2 id="mp-tfa-h2" style="margin:3px; background:#ceecf2; font-family:inherit; font-size:125%; font-weight:bold; border:1px solid #a3babf; text-align:left; color:#000; padding:0.2em 0.4em;">T17 Maneuvering Target Tracking: Overview and Nonlinear Filtering Methods</h2>
+
| style="padding:2px;" | <h2 id="mp-tfa-h2" style="margin:3px; background:#ceecf2; font-family:inherit; font-size:125%; font-weight:bold; border:1px solid #a3babf; text-align:left; color:#000; padding:0.2em 0.4em;">T17 Emerging Quantum Technologies for Fusion</h2>
 
|-
 
|-
 
| style="color:#000;" | <div id="mp-tfa" style="padding:2px 5px">
 
| style="color:#000;" | <div id="mp-tfa" style="padding:2px 5px">
Line 307: Line 307:
 
{| id="mp-upper" style="width: 80%; margin:4px 0 0 0; background:none; border-spacing: 0px;"
 
{| id="mp-upper" style="width: 80%; margin:4px 0 0 0; background:none; border-spacing: 0px;"
 
<div id="tutoial18"></div>
 
<div id="tutoial18"></div>
<!--        T18 Integration of Information to Indentify Objects in Big Data       -->
+
<!--        T18 Maneuvering Target Tracking: Overview and Nonlinear Filtering Methods       -->
 
| clatutoial="MainPageBG" style="width:100%; border:1px solid #bdd6c6; background:#e7f7e7; vertical-align:top; color:#000;" |
 
| clatutoial="MainPageBG" style="width:100%; border:1px solid #bdd6c6; background:#e7f7e7; vertical-align:top; color:#000;" |
 
{| id="mp-left" style="width:100%; vertical-align:top; background:#e7f7e76;"
 
{| id="mp-left" style="width:100%; vertical-align:top; background:#e7f7e76;"
| style="padding:2px;" | <h2 id="mp-tfa-h2" style="margin:3px; background:#d6efd6; font-family:inherit; font-size:120%; font-weight:bold; border:1px solid #bdd6c6; text-align:left; color:#000; padding:0.2em 0.4em;">T18 Integration of Information to Indentify Objects in Big Data</h2>
+
| style="padding:2px;" | <h2 id="mp-tfa-h2" style="margin:3px; background:#d6efd6; font-family:inherit; font-size:120%; font-weight:bold; border:1px solid #bdd6c6; text-align:left; color:#000; padding:0.2em 0.4em;">T18 Maneuvering Target Tracking: Overview and Nonlinear Filtering Methods</h2>
 
|-
 
|-
 
| style="color:#000;" | <div id="mp-tfa" style="padding:2px 5px">
 
| style="color:#000;" | <div id="mp-tfa" style="padding:2px 5px">
Line 321: Line 321:
 
{| id="mp-upper" style="width: 80%; margin:4px 0 0 0; background:none; border-spacing: 0px;"
 
{| id="mp-upper" style="width: 80%; margin:4px 0 0 0; background:none; border-spacing: 0px;"
 
<div id="tutoial19"></div>
 
<div id="tutoial19"></div>
<!--        T19 Extended Object Tracking: Theory and Applications       -->
+
<!--        T19 Integration of Information to Identify Objects in Big Data       -->
 
| clatutoial="MainPageBG" style="width:100%; border:1px solid #fff784; background:#fffff7; vertical-align:top; color:#000;" |
 
| clatutoial="MainPageBG" style="width:100%; border:1px solid #fff784; background:#fffff7; vertical-align:top; color:#000;" |
 
{| id="mp-left" style="width:100%; vertical-align:top; background:#fffff7;"
 
{| id="mp-left" style="width:100%; vertical-align:top; background:#fffff7;"
| style="padding:2px;" | <h2 id="mp-tfa-h2" style="margin:3px; background:#fff7bd; font-family:inherit; font-size:120%; font-weight:bold; border:1px solid #fff784; text-align:left; color:#000; padding:0.2em 0.4em;">T19 Extended Object Tracking: Theory and Applications</h2>
+
| style="padding:2px;" | <h2 id="mp-tfa-h2" style="margin:3px; background:#fff7bd; font-family:inherit; font-size:120%; font-weight:bold; border:1px solid #fff784; text-align:left; color:#000; padding:0.2em 0.4em;">T19 Integration of Information to Identify Objects in Big Data</h2>
 
|-
 
|-
 
| style="color:#000;" | <div id="mp-tfa" style="padding:2px 5px">
 
| style="color:#000;" | <div id="mp-tfa" style="padding:2px 5px">
Line 335: Line 335:
 
{| id="mp-upper" style="width: 80%; margin:4px 0 0 0; background:none; border-spacing: 0px;"
 
{| id="mp-upper" style="width: 80%; margin:4px 0 0 0; background:none; border-spacing: 0px;"
 
<div id="tutoial20"></div>
 
<div id="tutoial20"></div>
<!--        T20 Probabilistic situation assessment for abnormal interaction detection       -->
+
<!--        T20 Extended Object Tracking: Theory and Applications       -->
 
| clatutoial="MainPageBG" style="width:100%; border:1px solid #d6bdde; background:#f7eff7; vertical-align:top; color:#000;" |
 
| clatutoial="MainPageBG" style="width:100%; border:1px solid #d6bdde; background:#f7eff7; vertical-align:top; color:#000;" |
 
{| id="mp-left" style="width:100%; vertical-align:top; background:#e7f7e76;"
 
{| id="mp-left" style="width:100%; vertical-align:top; background:#e7f7e76;"
| style="padding:2px;" | <h2 id="mp-tfa-h2" style="margin:4px; background:#e7deef; font-family:inherit; font-size:125%; font-weight:bold; border:1px solid #d6bdde; text-align:left; color:#000; padding:0.2em 0.4em;">T20 Probabilistic situation assessment for abnormal interaction detection</h2>
+
| style="padding:2px;" | <h2 id="mp-tfa-h2" style="margin:4px; background:#e7deef; font-family:inherit; font-size:125%; font-weight:bold; border:1px solid #d6bdde; text-align:left; color:#000; padding:0.2em 0.4em;">T20 Extended Object Tracking: Theory and Applications</h2>
 
|-
 
|-
 
| style="color:#000;" | <div id="mp-tfa" style="padding:2px 5px">
 
| style="color:#000;" | <div id="mp-tfa" style="padding:2px 5px">
Line 349: Line 349:
 
{| id="mp-upper" style="width: 80%; margin:4px 0 0 0; background:none; border-spacing: 0px;"
 
{| id="mp-upper" style="width: 80%; margin:4px 0 0 0; background:none; border-spacing: 0px;"
 
<div id="tutoial21">
 
<div id="tutoial21">
<!--        T21 Multitarget tracking and sensor calibration in centralized and distributed networks     -->
+
<!--        T21 Probabilistic situation assessment for abnormal interaction detection     -->
 
| clatutoial="MainPageBG" style="width:100%; border:1px solid #f36766; background:#f9d6c9; vertical-align:top; color:#000;" |
 
| clatutoial="MainPageBG" style="width:100%; border:1px solid #f36766; background:#f9d6c9; vertical-align:top; color:#000;" |
 
{| id="mp-left" style="width:100%; vertical-align:top; background:#f9d6c9;"
 
{| id="mp-left" style="width:100%; vertical-align:top; background:#f9d6c9;"
| style="padding:2px;" | <h2 id="mp-tfa-h2" style="margin:3px; background:#f5baa3; font-family:inherit; font-size:120%; font-weight:bold; border:1px solid #f36766; text-align:left; color:#000; padding:0.2em 0.4em;">T21 Multitarget tracking and sensor calibration in centralized and distributed networks</h2>
+
| style="padding:2px;" | <h2 id="mp-tfa-h2" style="margin:3px; background:#f5baa3; font-family:inherit; font-size:120%; font-weight:bold; border:1px solid #f36766; text-align:left; color:#000; padding:0.2em 0.4em;">T21 Probabilistic situation assessment for abnormal interaction detection</h2>
 
|-
 
|-
 
| style="color:#000;" | <div id="mp-tfa" style="padding:2px 5px">
 
| style="color:#000;" | <div id="mp-tfa" style="padding:2px 5px">
Line 363: Line 363:
 
<!--        FUSION 2016 Tutorials        -->
 
<!--        FUSION 2016 Tutorials        -->
 
{| id="mp-upper" style="width: 80%; margin:4px 0 0 0; background:none; border-spacing: 0px;"
 
{| id="mp-upper" style="width: 80%; margin:4px 0 0 0; background:none; border-spacing: 0px;"
<div id="tutoial2"></div>
+
<div id="tutoial22"></div>
<!--        T22 Information fusion in resource-limited camera networks      -->
+
<!--        T22 Multitarget tracking and sensor calibration in centralized and distributed networks      -->
 
| clatutoial="MainPageBG" style="width:100%; border:1px solid #a3babf; background:#f5fdff; vertical-align:top; color:#000;" |
 
| clatutoial="MainPageBG" style="width:100%; border:1px solid #a3babf; background:#f5fdff; vertical-align:top; color:#000;" |
 
{| id="mp-left" style="width:100%; vertical-align:top; background:#e7f7e76;"
 
{| id="mp-left" style="width:100%; vertical-align:top; background:#e7f7e76;"
  
| style="padding:2px;" | <h2 id="mp-tfa-h2" style="margin:3px; background:#ceecf2; font-family:inherit; font-size:125%; font-weight:bold; border:1px solid #a3babf; text-align:left; color:#000; padding:0.2em 0.4em;">T22 Information fusion in resource-limited camera networks</h2>
+
| style="padding:2px;" | <h2 id="mp-tfa-h2" style="margin:3px; background:#ceecf2; font-family:inherit; font-size:125%; font-weight:bold; border:1px solid #a3babf; text-align:left; color:#000; padding:0.2em 0.4em;">T22 Multitarget tracking and sensor calibration in centralized and distributed networks</h2>
 
|-
 
|-
 
| style="color:#000;" | <div id="mp-tfa" style="padding:2px 5px">
 
| style="color:#000;" | <div id="mp-tfa" style="padding:2px 5px">
Line 378: Line 378:
 
<!--        FUSION 2016 Tutorials        -->
 
<!--        FUSION 2016 Tutorials        -->
 
{| id="mp-upper" style="width: 80%; margin:4px 0 0 0; background:none; border-spacing: 0px;"
 
{| id="mp-upper" style="width: 80%; margin:4px 0 0 0; background:none; border-spacing: 0px;"
<div id="tutoial3"></div>
+
<div id="tutoial23"></div>
<!--        T23 Introduction to Bayesian Filtering and Smoothing       -->
+
<!--        T23 Information fusion in resource-limited camera networks       -->
 
| clatutoial="MainPageBG" style="width:100%; border:1px solid #bdd6c6; background:#e7f7e7; vertical-align:top; color:#000;" |
 
| clatutoial="MainPageBG" style="width:100%; border:1px solid #bdd6c6; background:#e7f7e7; vertical-align:top; color:#000;" |
 
{| id="mp-left" style="width:100%; vertical-align:top; background:#e7f7e76;"
 
{| id="mp-left" style="width:100%; vertical-align:top; background:#e7f7e76;"
| style="padding:2px;" | <h2 id="mp-tfa-h2" style="margin:3px; background:#d6efd6; font-family:inherit; font-size:120%; font-weight:bold; border:1px solid #bdd6c6; text-align:left; color:#000; padding:0.2em 0.4em;">T23 Introduction to Bayesian Filtering and Smoothing</h2>
+
| style="padding:2px;" | <h2 id="mp-tfa-h2" style="margin:3px; background:#d6efd6; font-family:inherit; font-size:120%; font-weight:bold; border:1px solid #bdd6c6; text-align:left; color:#000; padding:0.2em 0.4em;">T23 Information fusion in resource-limited camera networks</h2>
 
|-
 
|-
 
| style="color:#000;" | <div id="mp-tfa" style="padding:2px 5px">
 
| style="color:#000;" | <div id="mp-tfa" style="padding:2px 5px">
Line 392: Line 392:
 
<!--        FUSION 2016 Tutorials        -->
 
<!--        FUSION 2016 Tutorials        -->
 
{| id="mp-upper" style="width: 80%; margin:4px 0 0 0; background:none; border-spacing: 0px;"
 
{| id="mp-upper" style="width: 80%; margin:4px 0 0 0; background:none; border-spacing: 0px;"
<div id="tutoial4"></div>
+
<div id="tutoial24"></div>
<!--        T24 Sensor Fusion for Intelligent Vehicles       -->
+
<!--        T24 Introduction to Bayesian Filtering and Smoothing       -->
 
| clatutoial="MainPageBG" style="width:100%; border:1px solid #fff784; background:#fffff7; vertical-align:top; color:#000;" |
 
| clatutoial="MainPageBG" style="width:100%; border:1px solid #fff784; background:#fffff7; vertical-align:top; color:#000;" |
 
{| id="mp-left" style="width:100%; vertical-align:top; background:#fffff7;"
 
{| id="mp-left" style="width:100%; vertical-align:top; background:#fffff7;"
| style="padding:2px;" | <h2 id="mp-tfa-h2" style="margin:3px; background:#fff7bd; font-family:inherit; font-size:120%; font-weight:bold; border:1px solid #fff784; text-align:left; color:#000; padding:0.2em 0.4em;">T24 Sensor Fusion for Intelligent Vehicles</h2>
+
| style="padding:2px;" | <h2 id="mp-tfa-h2" style="margin:3px; background:#fff7bd; font-family:inherit; font-size:120%; font-weight:bold; border:1px solid #fff784; text-align:left; color:#000; padding:0.2em 0.4em;">T24 Introduction to Bayesian Filtering and Smoothing</h2>
 
|-
 
|-
 
| style="color:#000;" | <div id="mp-tfa" style="padding:2px 5px">
 
| style="color:#000;" | <div id="mp-tfa" style="padding:2px 5px">
Line 403: Line 403:
 
| style="border:1px solid transparent;" |<br />
 
| style="border:1px solid transparent;" |<br />
 
|-
 
|-
 +
 +
<!--        FUSION 2016 Tutorials        -->
 +
{| id="mp-upper" style="width: 80%; margin:4px 0 0 0; background:none; border-spacing: 0px;"
 +
<div id="tutoial25"></div>
 +
<!--        T25 Sensor Fusion for Intelligent Vehicles        -->
 +
| clatutoial="MainPageBG" style="width:100%; border:1px solid #d6bdde; background:#f7eff7; vertical-align:top; color:#000;" |
 +
{| id="mp-left" style="width:100%; vertical-align:top; background:#e7f7e76;"
 +
| style="padding:2px;" | <h2 id="mp-tfa-h2" style="margin:4px; background:#e7deef; font-family:inherit; font-size:125%; font-weight:bold; border:1px solid #d6bdde; text-align:left; color:#000; padding:0.2em 0.4em;">T25 Sensor Fusion for Intelligent Vehicles</h2>
 +
|-
 +
| style="color:#000;" | <div id="mp-tfa" style="padding:2px 5px">
 +
|-
 +
|}
 +
| style="border:1px solid transparent;" |<br />
 +
|-
 +
 +
<!--        FUSION 2016 Tutorials        -->
 +
{| id="mp-upper" style="width: 80%; margin:4px 0 0 0; background:none; border-spacing: 0px;"
 +
<div id="tutoial26">
 +
<!--        T26 Multisensor Data Fusion in Shared Sensor and Actuator Networks      -->
 +
| clatutoial="MainPageBG" style="width:100%; border:1px solid #f36766; background:#f9d6c9; vertical-align:top; color:#000;" |
 +
{| id="mp-left" style="width:100%; vertical-align:top; background:#f9d6c9;"
 +
| style="padding:2px;" | <h2 id="mp-tfa-h2" style="margin:3px; background:#f5baa3; font-family:inherit; font-size:120%; font-weight:bold; border:1px solid #f36766; text-align:left; color:#000; padding:0.2em 0.4em;">T26 Multisensor Data Fusion in Shared Sensor and Actuator Networks</h2>
 +
|-
 +
| style="color:#000;" | <div id="mp-tfa" style="padding:2px 5px">
 +
</div>
 +
|-
 +
|}
 +
| style="border:1px solid transparent;" |<br />
 +
|-
 +
  
 
__NOTOC____NOEDITSECTION__
 
__NOTOC____NOEDITSECTION__

Revision as of 16:52, 18 February 2016

Download Call For Tutorials

Click here to download the call for tutorials.


List of Tutorials of FUSION 2016


T1 Bayesian Multiple Target Tracking


T2 Bayesian Networks and Trust Fusion with Subjective Logic


T3 Multisensor-Multitarget Tracker/Fusion Engine Development and Performance Evaluation for Realistic Scenarios


T4 An Introduction to Track-to-Track Fusion and the Distributed Kalman Filter


T5 A Finite-Set Statistics Prime


T6 Information Quality in Information Fusion and Decision Making


T7 Multitarget Tracking and Multisensor Information Fusion


T8 Overview of High-Level Information Fusion Theory, Models, and Representations


T9 Quantum Physics Methods For Nonlinear Filtering


T10 Basic concepts in multiobject estimation


T11 System-of-Systems Concepts, Opportunities and Itutoialues for Information Fusion


T12 Implementations of random-finite-set-based multi-target filters


T13 Tracking and Sensor Data Fusion – Methodological Framework and Selected Applications


T14 Multistatic Exploration – Introduction to Modern Patutoialive Radar and Multistatic Tracking & Data Fusion


T15 Big Data Fusion and Analytics


T16 Object tracking, sensor fusion and situational awarenetutoial for atutoialisted- and self-driving vehicles: Problems, solutions and directions


T17 Emerging Quantum Technologies for Fusion


T18 Maneuvering Target Tracking: Overview and Nonlinear Filtering Methods


T19 Integration of Information to Identify Objects in Big Data


T20 Extended Object Tracking: Theory and Applications


T21 Probabilistic situation assessment for abnormal interaction detection


T22 Multitarget tracking and sensor calibration in centralized and distributed networks


T23 Information fusion in resource-limited camera networks


T24 Introduction to Bayesian Filtering and Smoothing


T25 Sensor Fusion for Intelligent Vehicles


T26 Multisensor Data Fusion in Shared Sensor and Actuator Networks


Personal tools